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Abstract

It has been demonstrated that it is possible to have a better understanding of the mass-transfer phenomena occurring at PEMFC electrodes by
distinguishing the various diffusive regimes taking place inside the porous layer close to the electrodes themselves. In each regime the interactions
between diffusive and forced flows have been expressed in terms of Peclet numbers and the overall diffusive resistances have been expressed in
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erms of Sherwood numbers.
Now the comparison of traditional and non-traditional geometrical arrangements can be more fully discussed and the geometrical optimisation

f the cell can be more clearly determined by explicitly considering the role of the geometrical arrangement of the cell channels and the related
ressure field.

Both interdigitated and serpentine cells can be operated in such a way that high Sherwood numbers and, then, a high limit current are attained.
oth types of cells are penalised by higher head losses than traditional cells, but these appear to be much greater in the serpentine arrangement.
The ultimate goal of reaching high, almost uniform Sherwood numbers and low head losses is still problematic. A partially interdigitated

onfiguration might be a step in the right direction.
2006 Elsevier B.V. All rights reserved.
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. Introduction

In the first part of this work [1] attention was focused on
he gas-phase mass transfer occurring at PEMFC electrodes.
he various possible diffusive regimes were determined for each

egime, the interaction between diffusive and forced flows was
xpressed in terms of the Peclet number and then, the overall
iffusive resistance was expressed in terms of the Sherwood
umbers as a function of the Peclet numbers.

The results of this approach have been used in the discussion
f a number of experimental findings relating to traditional [2,3],
nterdigitated [4–7] and serpentine [8] cells. A better under-
tanding of the role of the gas mass transfer has been shown
o be effective in explaining some important differences in the
erformance of these cells, especially in terms of limit current.

∗ Corresponding author. Tel.: +39 010 3532926; fax: +39 010 3532589.
E-mail address: betta@diam.unige.it (E. Arato).

Now, in the second part of this work the comparison of inter-
digitated and serpentine geometries will be further developed by
explicitly taking into account the pressure differences between
contiguous channels and their dependence on the head losses
through the channels. These results are currently available as
the output of detailed cell models [7,9]; here, a simplified, ana-
lytical solution is proposed, by means of which the differences
between different geometrical arrangements can be immediately
appreciated.

Both interdigitated and serpentine cells can be operated at
high Sherwood numbers corresponding to high limit currents
[1,9], but both are correspondingly penalised by higher head
losses than traditional cells, this being much greater in the case
of the serpentine arrangement. A better understanding of these
features will allow us to more effectively plan the geometrical
optimisation of the cell.

However, the ultimate goal of reaching high and uniform
Sherwood numbers in all parts of the cell plane and low head
losses is still problematic, and even interdigitated cells do not
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Nomenclature

A relative permeability—def. (4)
b width of a channel (m)
B def. (19)
c characteristic velocity of Eq. (42) (m s−1)
C1, C2, C3, C4 integration constants—def. (10)
C5, C6, C7, C8 integration constants—def. (23)
d length of the diffusive layer (m)
df diameter of the holes interconnecting the channels

(m)
D effective diffusivity in the porous medium

(m2 s−1)
DM molecular diffusivity in the continuous gas phase

(m2 s−1)
fc, ff, fp, fs shape factors
h thickness of the diffusive layer (m)
k permeability of the porous medium (m2)
L length of the channel (m)
M def. (44)
nc number of channels in a cell
N mass flux (kg m−2 s−1)
p dimensionless pressure
P absolute pressure (kg m−1 s−2)
Pr reference pressure—def. (4) (kg m−1 s−2)
Pex transversal Peclet number
Pey axial Peclet number
Sh Sherwood number
u velocity in the channel (m s−1)
ur inlet (maximum) u velocity (m s−1)
v velocity in the porous medium (m s−1)
vr reference velocity for v—def. (4) (m s−1)
x spatial coordinate, perpendicular to the electrode

(m)
y spatial coordinate, parallel to the electrode (m)
z dimensionless spatial coordinate along the chan-

nel
Z spatial coordinate, parallel to the channel (m)

Greek letters
∆ dimensionless head loss—def. (19)
ϕ interdigitation degree
µ viscosity of the gas (kg m−1 s−1)
ρ density of the gas (kg m−3)

Superscripts and subscripts
c channel
f interconnecting hole
L end of the channel
p permeable boundary
r reference value
s porous medium
0 beginning of the channel
0, 1, 2, 3 four successive channels
′ refers to serpentine arrangement

seem to be able to supply a completely satisfactory answer to
this problem at present. The partially interdigitated configuration
proposed in the final section of this work might be a step in the
right direction.

Reference schemes for the geometrical arrangements for an
interdigitated (Fig. 1a) and a serpentine (Fig. 1b) configuration,
respectively, considered are reported in Fig. 1.

2. The flow field for interdigitated geometry

As discussed in the first part of this work [1], a good estima-
tion of the velocity of migration in the porous medium close to
the electrode is an important and necessary premise for a good
estimation of the Sherwood number and, then, the limit current.
The well-known integrated one-dimensional permeability equa-
tion

v = fsk(P1 − P2)

µd
(1)

is probably accurate enough to evaluate the velocity of migra-
tion when (P1 − P2) � P1 and a substantially one-dimensional
migration path (h � d; see Fig. 1, Part 1 of this work [1]), but
it requires a knowledge of the driving force (P1 − P2) and this,

F
a

ig. 1. Reference geometrical and flow schemes for an electrode element: (a)
n interdigitated arrangement and (b) a serpentine arrangement.
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in turn, depends on the head losses inside the channels and the
channel mass balance.

Eq. (1) and the consequent evaluation of the local Sherwood
number can be included in a detailed simulation tool, so that the
effects of the gas mass transfer towards the electrodes is more
correctly taken into account and a better prediction of the cell’s
behaviour at high currents can be obtained. Some examples of
the results obtainable using this method have been reported in
the first part of this work. Here, simplified analytical solutions
for the flow and pressure fields are presented, so that the dif-
ferences between the various geometrical arrangements can be
fully demonstrated.

With reference to a pair of interdigitated channels, 1 and 2,
under the simplified condition of constant total flow rate, the
mass and momentum balances can be written

dP1

dZ
= −fc32u1µ

b2 ,
dP2

dZ
= −fc32u2µ

b2 (2)

du1

dZ
= −fpvh

b2 ,
du2

dZ
= +fpvh

b2 (3)

where each channel is assumed to be in a laminar regime and
the migration flow rate lost by the first channel is acquired by
the second.

The constant volumetric flow rate assumption (in synthe-
sis u1 + u2 = constant) needs some further explanation. Strictly
speaking, it should correspond to the assumption of null cur-
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the following system of differential equations is obtained:

d2(p1 − p2)

dz2 = A2(p1 − p2),
d2(p1 + p2)

dz2 = 0 (6)

For an interdigitated geometry the boundary conditions to be
added to the equations in (6) are

z = 0; u1 = ur; u2 = 0,
dp1

dz
= −1,

dp2

dz
= 0,

d(p1 − p2)

dz
= −1 (7)

z = 1; u1 = 0; u2 = ur,
dp1

dz
= 0,

dp2

dz
= −1,

d(p1 − p2)

dz
= 1 (8)

The solution

p1 − p2 = C1 exp(Az) + C2 exp(−Az),

sp1 + p2 = C3z + C4 (9)

with
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ent, because the electrochemical reaction necessarily implies a
ow rate variation, a decrease at the anode and an increase at

he cathode. Moreover, any temperature distribution in the cell
s associated with further volumetric flow rate changes. Bearing
n mind these considerations, the reference to a mean, constant,
olumetric flow rate could seem an oversimplification. On the
ther hand, the pressure drops to be considered are, primarily,
hose taking place at the cathode, where the molar flow rate vari-
tions of the supplied air are of the order of a 4–6%, so that the
ssumption of a mean flow rate value implies quite acceptable
ncertainties (less than 3%). Errors on the anodic side could
e significantly greater (namely 30–40%), but the problem of
he anodic pressure drops is significantly less important. How-
ver, if one is interested in a more exact evaluation of the flow
eld on both sides, taking effective flow rate changes as well
s temperature distributions into account, detailed cell models
re available [7,9]. The simplified approach used here offers
he advantage of an explicit analytical solution that is easily
uited to a substantially quantitative discussion of different cell
rrangements.

By combining Eqs. (1)–(3) and by defining the dimensionless
arameters and variables

vr = urb
2

fphL
, Pr = fc32urµL

b2 ,

A2 = fcfpfs64khL2

db4 (4)

= P

Pr
, z = Z

L
(5)
C1 =
(

1

A

) [
1 + exp(−A)

exp(A) − exp(−A)

]

C2 =
(

1

A

) [
1 + exp(A)

exp(A) − exp(−A)

]

C3 = −1

(10)

emonstrates that the migration velocities v, which are propor-
ional to the pressure difference,

v

vr
=

(
A2

2

)
(p1 − p2), vm = vr (11)

re symmetrical to the middle of the cell (z = 1/2), while the
elocities along the channels, which are proportional to the pres-
ure derivatives, are anti-symmetrical. The overall head losses
or the pair of interdigitated channels is

10 − p2L = C1[1 + exp(A)] + C2[1 + exp(−A)] + 1

2
(12)

nd the fraction of the entire flow rate that migrates through the
orous medium from the first channel to the second (by pass
raction) corresponds, obviously, to unity (vm/vr = 1).

The main parameter determining the flow field configura-
ion is A, which is a function of the permeability of the porous

edium and the geometry of the system. The effects of parame-
er A on the flow fields and the pressure field in an interdigitated
rrangement are illustrated in Fig. 2.

By varying A the following limit cases can be considered.
hen the permeability is much higher than the head losses of

he channels
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Fig. 2. The distribution of the flow rate between two adjacent interdigitated
channels along the axial coordinate for various values of parameter A: (a) the
velocity inside the first channel (u/ur) and (b) the migration velocity between
channels (v/vr). (c) The trend of the global head losses (p10 − p2L) as a function
of parameter A.

• A � 1

u1

ur
≈ 1 + exp(−Az) − exp(−A + Az)

2
v

vr
≈

(
A

2

)
[exp(−Az) + exp(−A + Az)]

(13)

p10 − p2L ≈ 1

2
(14)

half of the entire flow rate is almost immediately transferred
from one channel to the other, then each channel conveys half
the flow rate, with overall head losses almost equal to a half
of the ones pertinent to a single channel with a velocity ur (or
equal to the ones pertinent to a single channel with a velocity
ur/2). The remaining half flow rate is transferred to the second
channel immediately before the exit point.

Obviously, a pair of interdigitated channels does not oper-
ate in this way. The correct operating conditions are, on the
contrary, nearer to the second limit case, where the perme-
ability of the porous medium is low.

• A � 1

u1

ur
≈ 1 − z,

v

vr
≈ 1 (15)

p10 − p2L ≈ 2

A2 � 1 (16)

and the overall head losses are controlled by this low perme-
ability and are much greater than the ones of a single channel.
In this case, the velocity of migration v is almost uniform
along the entire channel length (z axis).

As an effective interdigitation should require A < 1, the
global head losses of the cell are correspondently high (see
Fig. 2c). A good compromise can be reached by choosing
values of A of the order of 3, so that a good distribution of
the interdigitation flow is achieved in correspondence to the
global head losses that are only a little greater than those of
the traditional arrangement.

3. The flow field for serpentine geometry

The serpentine geometry, also in its simplest, single channel
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ersion, is a little more difficult to analyse than the interdigitated
ne. The study of two contiguous channels (1 and 2), now with
ountercurrent velocities, needs to consider another two, exter-
al, channels (0 and 3), which are also involved in an exchange
f mass with the preceding. On the other hand, the simplification
f the repeatable trend of the head losses along the serpentine
hannel can be introduced

0(z) = p2(z) + 2∆, p3(z) = p1(z) − 2∆ (17)

nd, then a formulation strictly similar to (6) can be attained

d2(p1 − p2 − ∆)

dz2 = B2(p1 − p2 − ∆),

s
d2(p1 + p2)

dz2 = 0 (18)

2 = 2A2, 2∆ = p0L − p1L = p2L − p3L = p10 − p20

(19)

On the other hand, the correct set of boundary conditions is
ow

z = 0; u2 = −u1, p1 − p2 = 2∆,

d(p1 + p2)

dz
= 0 (20)

= 1; u2 = −u1, p1 − p2 = 0,
d(p1 + p2)

dz
= 0

(21)
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so that the solution

p1 − p2 = C5 exp(Bz) + C6 exp(−Bz) + ∆,

p1 + p2 = C7z + C8 (22)

C5 = − ∆[1 + exp(−B)]

exp(B) − exp(−B)

C6 = ∆[1 + exp(B)]

exp(B) − exp(−B)
C7 = 0

(23)

demonstrates that this time u is symmetrical and v anti-
symmetrical to the middle of the cell:

u1

ur
= −dp1

dz
= −

(
1

2

)
d(p1 − p2)

dz

=
(

�B

2

)
[1+exp(−B)] exp(Bz)+[1 + exp(B)] exp(−Bz)

exp(B) − exp(−B)
(24)

c

v

vr
=

(
B2

4

)
(p1 − p2), vm < vr (25)
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Fig. 3. The distribution of the flow rate between two adjacent serpentine chan-
nels along the axial coordinate for various values of parameter A (A2 = B2/2): (a)
the velocity inside the first channel (u/ur) and (b) the migration velocity between
channels (v/vr). (c) The trend of the global head losses (p10 − p20) as a function
of parameter A.

• B � 1

∆ ≈ 1,
vm

vr
≈ B2

4
� 1 (30)

u1

ur
≈ 1,

v

vr
≈

(
B2

2

)
(1 − z) � 1 (31)

which controls the overall head losses. In this case, the veloc-
ity of migration v is very low and strongly asymmetrical,
while the head losses of the channel are only slightly affected
by the very low by-pass fraction.

In a serpentine cell the single channel head losses are
higher than in the traditional arrangement because the veloc-
ity is higher; the decrease corresponding to the increase in
the by-pass fraction (see Fig. 3c) is not decisive; more-
over, the global head losses depend on the number of pas-
sages, so that increasing the cell size quickly makes them
unacceptable.
The by-pass fraction, corresponding to the mean value of v,
s now

vm

vr
=

(
B2

4

)
(p1 − p2)m =

(
B2

4

)
∆ (26)

nd the sum of (24) and (26) corresponds to unity, that is it rep-
esents the whole reference flow rate through the cell. This last
ondition makes it possible to evaluate the head loss parameter

=
{(

B2

4

)
+ B

2

[
exp(B) + exp(−B) + 2

exp(B) − exp(−B)

]}−1

(27)

he effects of parameter A on the flow fields and the pressure
eld in a serpentine arrangement are illustrated in Fig. 3.

With regard to the limit cases, when the permeability is high

B � 1

∆ ≈ 4

B2 , vm ≈ vr (28)

u1

ur
≈

(
2

B

)
[exp(−Bz) + exp(−B + Bz)]

v

vr
≈ 1 + exp(−Bz) − exp(−B + Bz)

(29)

almost the entire flow rate is transferred through the porous
layer (the by-pass fraction is only a little less than unity), while
the velocity along most of the channels and the corresponding
flow rate fraction are very low.

This first limit case may seem interesting, but it is not very
realistic: even in the serpentine geometry the most likely limit
case is the one corresponding to low permeability.
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4. The order of magnitude of the parameters

We can assume unit values for the various shape factors and
we have referred to literature values for the geometrical and
physical parameters:

h = 2 × 10−2 cm, L = 10 cm, d = b = 10−1 cm

k = 10−8 cm2, µ = 10−4 g cm−1 s−1,

s�Pr = 3 × 103 Pa = 3 × 104 g cm−1 s−2

DM = 0.2 cm2 s−1,
D

DM
= 0.1

and we have also defined [1]

the axial Peclet number: Pey = dv/D

the transversal Peclet number: Pex = h2v/dD

and the Sherwood number Sh as the ratio between the actual
mean flux of the electrochemical reagent and a reference flux
[1].

Then, by making these assumptions the transition from the
diffusive to the forced regime can be situated around Pey = 25 and
the transition from the forced flow rate to the forced pellicular
regime around Pey = 60. Moreover, the above set of data leads
t
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cases. Assuming low permeability regimes (A � 1; B � 1), the
interdigitated case is characterised by

v = vr = urb
2

fphL
, |�P | = 2Pr

A2 = fc64urµL

A2b2

while the serpentine is characterised by

vm = B2vr

4
= B2u′

rb
2

fphL
, |�P | = fc32u′

rµL′

b2

Under the same cell flow rate and the same number of chan-
nels for the cell,

u′
r = urnc

2
, L′ = Lnc

the comparison of the by-pass fractions

(vm)serp

vinterd
= B2nc

8
= A2nc

4
(32)

even when not considering the highly asymmetrical distribution
of the serpentine, strongly favours the interdigitated geometry,
unless the number of channels is very high. But in such a case
the comparison of the head losses

|�P |serp

|�P |interd
= A2n2

c

4
(33)

should demonstrate that the overall serpentine head losses are
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2 = 0.13, A = 0.35, B = 0.5

o that such approximations as exp(A) ≈ 1 + A are correct to
ithin a few percent and, then, a sure reference can be made

o the limit cases of low permeability. However, it should be
ept in mind that a relatively little change in the geometrical or
hysical parameters is also sufficient to make this simplification
ess accurate and raise the values of B to the order of unity.

For the interdigitated geometry, with A = 0.35, the velocity of
igration and the corresponding Peclet numbers are

= 30 cm s−1, Pey = 150, Pex = 6, Sh = 0.9

So, the migration through the porous medium takes place
nder a forced regime and, prevalently, under a forced pellicular
egime. Under such conditions the Sherwood number is of the
rder of unity.

For the serpentine geometry, with B = 0.5, the velocities of
igration are undoubtedly lower; a mean value is about

= 2 cm s−1, Pey = 10, Pex = 0.4, Sh = 0.3

o that the migration still takes place in a substantially diffusive
egime, with Sherwood numbers of the order of 0.3.

A significant increase in the velocity of migration and the
herwood number can only occur when the head losses are
trongly increased, as is clearly demonstrated by the results
eported by Zhukovsky and Pozio [8].

Another way of looking at the question, so that the differ-
nt flow conditions of a serpentine channel and an interdigitated
onfiguration can more clearly be taken into account, is to con-
ider the by-pass fractions and the overall head losses in the two
uch greater than the already considerable ones that characterise
n interdigitated cell.

. The partial interdigitated geometry

In the preceding section, we demonstrated how the serpentine
eometry could contribute to lowering the diffusive resistances
nly if heavy overall head losses are allowed. On the other hand,
hukovsky and Pozio have underlined how a significant lower-

ng of the diffusive resistances can also be attained by using
eometries that are characterised by rather moderate migration
elocities.

The interdigitated geometries also have greater head losses
han the traditional geometries but, on the other hand, they permit

igration velocities that are often greater than what is needed.
or instance, if the migration velocity of the above example were
f 20 cm s−1 instead of 30 cm s−1, we would still have Pey = 100,
forced flow rate regime and Sh = 0.6, sufficient for a significant

ncrease in the limit current.
A useful modification to the interdigitated geometry is what

ould be referred to as “partially interdigitated”: instead of feed-
ng the entire flow rate of a pair of channels only to the first
hannel, so that it transversally migrates to the second and exits
ntirely from that one, one could feed a fraction (1 + ϕ)/2 of the
ow rate to the first channel and a fraction (1 − ϕ)/2 to the sec-
nd, so that only the fraction ϕ (interdigitation degree) is forced
o migrate transversally from one channel to the other and, at
he exit, the first channel still conveys the fraction (1 − ϕ)/2 to
he exit and the second the fraction (1 + ϕ)/2. The correct distri-
ution of the flow rate in the two channels could be obtained by
eans of calibrated holes and (low) localised head losses.
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The differential equations in (6) are still valid for this partial
interdigitated geometry, but the boundary conditions have to be
changed in order to allow for the different distribution of the
flow rate

z = 0,
dp1

dz
= −1 + ϕ

2
,

dp2

dz
= −1 − ϕ

2
,

d(p1 − p2)

dz
= −ϕ (34)

z = 1,
dp1

dz
= −1 − ϕ

2
,

dp2

dz
= −1 + ϕ

2
,

d(p1 − p2)

dz
= ϕ (35)

A solution such as (9) is still obtained, with the integration
constants C1 and C2 multiplied by a factor ϕ over the values in
(10) and, again, C3 = −1. The velocities of migration through
the porous layer, which are still symmetrical, are reduced by the
factor ϕ

v

vr
=

(
ϕA2

2

)
(p1 − p2), vm = ϕvr (36)

just as the overall head losses of the two channels are similarly
reduced

p
( ϕ ) [1 + exp(A)][1 + exp(−A)] 1

T
d
c

•

a
b
c
r
l

(

Recalling Eq. (1) and making reference to low permeabil-
ity (A � 1), so that (P1 − P2)0 = (P1 − P2)L = P1 − P2 = �P and
v(z) = constant, we have

v = ϕ

(
urb

2

hd

)
= fsk �P

µd
(41)

and the following equation in ϕ can be written:

ϕ = (1 − ϕ2)ur

c
, c = 2µdd4

f

ffρklb2 (42)

The interdigitation degree

ϕ = −1 + [1 + 4(ur/c)2]
1/2

2ur/c
(43)

is then an increasing function of the velocity ur. In turn, the
migration velocity

v = Mϕur, M = b2

hd
(44)

shows a more than linear increase with ur, that is the whole
flow rate of the two channels. So, when the desired current,
and then the flow rate, is increased, the utilisation degree being
equal, the partially interdigitated cell responds with an increase
in the interdigitation degree and a more effective increase in
the migration velocity, the Sherwood number and the limit cur-
r
l

A

A
(
r

R

[
[
[
[
[
[

[

[
[

10 − p2L =
A exp(A) − exp(−A)

+
2

(37)

he by-pass fraction obviously corresponds to the interdigitation
egree (vm/vr = ϕ). In particular, the low permeability limit
ase now predicts

A � 1

u1

ur
≈ 1 + ϕ − 2ϕz

2
,

v

vr
≈ ϕ (38)

p10 − p2L ≈ 2ϕ

A2 (39)

so that the overall head losses can be significantly reduced
without hampering the limit current too much.

The partially interdigitated geometry could present a further
dvantage. As has already been said, partial interdigitation can
e realised by means of calibrated holes that connect a pair of
hannels at their beginning and at their end so that the flow
ate distribution between the two depends on the localised head
osses of the holes

P1−P2)0 = (P1 − P2)L =
(

ρff

2

) [
ur

(
b

df

)2

(1 − ϕ)

]2

(40)
ent, at the expense of a lower increase in the overall head
osses.
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